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forest
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ABSTRACT
It was demonstrated in the past that radar data is useful to
estimate aboveground biomass due to their interferometric cap-
ability. Therefore, the potential of a globally available TanDEM-X
digital elevation model (DEM) was investigated for aboveground
biomass estimation via canopy height models (CHMs) in a tropical
peat swamp forest. However, CHMs based on X-band interferom-
eters usually require external terrain models. High accurate terrain
models are not available on global scale. Therefore, an approach
exclusively based on TanDEM-X and the decrease of accuracy
compared to an approach utilizing a high accurate terrain model
is assessed. In addition, the potential of X-band interferometric
heights in tropical forests needs to be evaluated. Therefore, two
CHMs were derived from an intermediate TanDEM-X DEM (iDEM;
as a precursor for WorldDEMTM) alone and in combination with
lidar measurements used as terrain model. The analysis showed
high accuracies (root mean square error [RMSE] = 5 m) for CHMs
based on iDEM and reliable estimation of aboveground biomass.
The iDEM CHM, exclusively based on TanDEM-X, achieved a poor
R2 of 0.2, nonetheless resulted in a cross-validated RMSE of 54
t ha−1 (16%). The low R2 suggested that the X-band height alone
was not sufficient to estimate an accurate CHM, and thus the need
for external terrain models was confirmed. A CHM retrieved from
the difference of iDEM and an accurate lidar terrain model
achieved a considerably higher correlation with aboveground bio-
mass (R2 = 0.68) and low cross-validated RMSE of 24.5 t ha−1

(7.5%). This was higher or comparable to other aboveground
biomass estimations in tropical peat swamp forests. The potential
of X-band interferometric heights for CHM and biomass estimation
was thus confirmed in tropical forest in addition to existing knowl-
edge in boreal forests.
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1. Introduction

It is a prerequisite to estimate the aboveground biomass and its change over time to
implement programmes, such as reducing emissions from deforestation and degrada-
tion (REDD+), where the reduction of carbon emission from deforestation and degrada-
tion and the enhancement of carbon stocks are incentivized. This could support climate
change mitigation (Van der Werf et al. 2009; Gibbs et al. 2007; Olander et al. 2008).
Tropical peat swamp forests and their soils play a significant role in the global carbon
cycle because their carbon emissions equal one-fourth of total emissions from tropical
forests despite their relatively small extent compared to the overall tropical forests (Page
et al. 2002; Page, Rieley, and Banks 2011; Van der Werf et al. 2009; Lawson et al. 2015).

Estimating forest canopy height and subsequently biomass is considered high poten-
tial for large scale biomass estimations (Chavez et al. 2005; Koch 2010; Lefsky et al. 2002;
Saatchi et al. 2011; Asner et al. 2009). A frequently used method is to produce a digital
surface model (DSM) and by subtracting a digital terrain model (DTM) deriving a canopy
height model (CHM). The CHM represents the vegetation height as well as the canopy
surface, whereas the canopy surface represents the crown topography, which can be
used, e.g. for single tree detection (Koch, Heyder, and Weinacker 2006). The vegetation
height is frequently used to estimate the biomass in combination with field measured
data, whereas the capability of airborne as well as space borne lidar was demonstrated
(Boehm, Liesenberg, and Limin 2013; St-Onge, Hu, and Vega 2008; Dandois and Ellis
2013; Simard et al. 2011; Lefsky et al. 2005; Rosette, North, and Suárez 2008; Drake et al.
2002).

The Geoscience Laser Altimeter System (GLAS) on board of the ice, cloud, and land
elevation satellite (ICESat) was a space borne lidar, which was used to extract vegetation
height profiles from the laser signal estimating forest height accurately (Lefsky et al.
2005; Rosette, North, and Suárez 2008; Simard et al. 2011). ICESat acquired data not
continuously but on ca. 65 m diameter footprints with a distance of 170 m along track
and in the order of kilometres across track (Abdalati et al. 2010; Simard et al. 2011).
Consequently, spatial sampling schemes are required for this space borne system to
achieve continuous mapping results (Simard et al. 2011). The estimated canopy height
from ICESat GLAS was further utilized with external data to estimate aboveground
biomass on pan-tropical scale (Baccini et al. 2008; Saatchi et al. 2011). Today, lidar
campaigns are mostly airborne, especially after the failure and retirement of ICESat
GLAS, and thus lidar campaigns are cost-intensive compared to space borne systems
(Köhl et al. 2011; Koch 2010). Subsequently, aboveground biomass estimations via
airborne lidar sensors are applicable mainly for small spatial coverage or should be
integrated in sampling schemes for large area applications (Asner et al. 2009).

For instance, optical as well as synthetic aperture radar (SAR) space borne sensors are
suitable to derive digital elevation models (DEMs) on large areas consistently, allowing
continuous canopy height estimation. However, only SAR sensors can acquire consistent
data over tropical forests because of their weather and day/night independence. The
potential of interferometric SAR (InSAR) for canopy height and aboveground biomass
estimation has long been recognized. The method is based on the assumption that short
wavelength SAR will penetrate marginally into the canopy. Thus, the resulting DEM can
be considered to be a surface model (DSM). Shuttle Radar Topography Mission (SRTM) C-

5022 M. SCHLUND ET AL.



and X-band were frequently used to estimate canopy height and biomass in combina-
tion with an external DTM (Sexton et al. 2009; Solberg et al. 2010; Weydahl et al. 2007).
Kellndorfer et al. (2004) suggested a minimum mapping unit of 1.8 ha in order to yield
stable estimates of SRTM height.

The TanDEM-X mission aims to create a global DEM with high resolution (12 m) on
basis of interferometric SAR exploitation (Krieger et al. 2007). The accuracy of TanDEM-X
to create a CHM with external lidar terrain model and the error sources were assessed in
boreal forests, where the X-band and lidar surface heights difference ranged between
1.3 and 1.5 m (Sadeghi, Leblon, and Simard 2016). DEMs derived from TanDEM-X InSAR
dataset were used to estimate canopy height and biomass of boreal forests resulting in a
relative error of 43% on plot level and 19% on stand level (Solberg et al. 2013; Rahlf et al.
2014; Solberg et al. 2014). Forest attributes, such as forest height, basal area and volume
were estimated with a CHM based on TanDEM-X as surface and lidar as terrain model
again in boreal forests (Karila et al. 2015).

The potential of airborne X- and P-band InSAR for canopy height estimation was
evaluated in tropical forests (Rombach and Moreira 2003; Gama, Dos Santos, and Mura
2010; Neeff et al. 2005). For instance, Neeff et al. (2005) demonstrated the potential of
such an airborne InSAR for canopy height (R2 = 0.83, root mean square error
[RMSE] = 4.1 m) and biomass estimation (R2 = 0.89, cross-validated RMSE = 46.1
t ha−1) in the tropical forest of the Amazon basin. Space borne TanDEM-X was used
together with lidar, optical imagery and L-band data from ALOS PALSAR to estimate
biomass and forest area in the Miombo woodlands of Tanzania, whereas TanDEM-X was
considered less important than high resolution optical images from RapidEye (Naesset
et al. 2016). It is worth noting that the Miombo woodlands of Tanzania have significantly
lower biomass compared to dense tropical forest (Solberg et al. 2015a). Treuhaft et al.
(2015) estimated aboveground biomass with errors about 29–35% combining means of
the interferometric height, lidar terrain height and interferometric coherence from
TanDEM-X and suggested that those results require further research.

In addition, Solberg et al. (2013, 2014, 2015a) achieved high accuracies in deforesta-
tion and biomass change mapping by using the combination of different X-band height
models from SRTM and TanDEM-X. Nevertheless, this biomass change approach requires
knowledge about the relationship of InSAR height and biomass in order to convert the
X-band InSAR height changes to biomass (Solberg et al. 2015a, 2014). However, this
knowledge is lacking in tropical forests since most of the studies using space borne data
such as the TanDEM-X heights were based in boreal forests (Solberg et al. 2015a; Rahlf
et al. 2014; Solberg et al. 2014; Sadeghi, Leblon, and Simard 2016; Karila et al. 2015).

All the aforementioned studies have the main challenge of the availability of a DTM
representing the bare earth height for CHM creation in common. Most of them, espe-
cially the TanDEM-X studies, used lidar to retrieve the terrain height (e.g. Sexton et al.
2009; Solberg et al. 2010; Solberg et al. 2013; Rahlf et al. 2014; Treuhaft et al. 2015;
Sadeghi, Leblon, and Simard 2016; Karila et al. 2015), but also the interferometric SAR
exploitation of long wavelengths (Balzter, Rowland, and Saich 2007; Sexton et al. 2009;
Gama, Dos Santos, and Mura 2010; Hansen et al. 2015) or other data sources such as
topographic maps (Weydahl et al. 2007; Kellndorfer et al. 2004; Hyde et al. 2006) could
be utilized.
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On the basis of the statements above, the objectives of this research are two folds.
TanDEM-X surface models were assessed and considered high accurate surpassing
mission requirements in moderate relief, whereas assessments in tropical forest condi-
tions on local scale are lacking (Balzter, Baade, and Rogers 2016; Wessel et al. 2014). A
DTM is retrieved from the TanDEM-X DEM and no validation of TanDEM-X terrain models
is known to the authors. Therefore, the first main objective of this study is the verifica-
tion of digital surface and DTM from TanDEM-X in a tropical forest. Furthermore, the
potential of the DTM for canopy height and biomass estimation is assessed in order to
overcome the limitations of using an external terrain model dataset.

Second, previous results suggest that the potential of space borne X-band interfero-
metric height for CHM and further biomass estimation in tropical forests require more
research (Naesset et al. 2016; Treuhaft et al. 2015). However, the relationship of X-band
InSAR height and biomass is of high importance in order to estimate the biomass if a
terrain model exists or in biomass change assessments comparing two X-band InSAR
heights (Solberg et al. 2014, 2015a). Therefore, the second main objective is the analysis
of TanDEM-X height in combination with a high accurate terrain model for canopy
height and biomass estimation of tropical forests in order to confirm promising results
from boreal forests (Solberg et al. 2013; Rahlf et al. 2014; Sadeghi, Leblon, and Simard
2016; Karila et al. 2015). Potentially, the TanDEM-X surface height could be used as
homogeneous and consistent data source in combination with any terrain model in
order to estimate canopy height and biomass. Even outdated or future acquired terrain
models could be used assuming that the terrain is constant over time, which is in most
cases a realistic assumption. In addition, the found X-band InSAR height and biomass
relationship of tropical forests within this study could be further utilized in biomass
change assessments, e.g. suggested by Solberg et al. (2015a).

2. Study area

The study area is located in Central Kalimantan and is about 60 km west of the provincial
capital Palangkaraya. In general, the climate is humid tropic divided into an averaged
dry season from June to September and a wet season from October to May (Jauhiainen
et al. 2005). The study area exhibits a flat terrain and is covered by tropical peat swamp
forest, which is limited through the Kapuas River in the west (Figure 1).

The peat swamp forests in the investigation area are highly endangered despite
their importance as carbon storage. The study area was part of the Mega Rice Project
(MRP), which was abandoned in 1999 (Muhamad and Rieley 2002; Wösten et al. 2008).
The main objective of the MRP was to transform about 1 million hectares of tropical
peat lands in rice cultivation. Therefore, the study area is heavily affected by the
construction of canals and related deforestation, which is visible in the southern part
of the DEM (Figure 1). The lidar and field data were mainly acquired in forested areas
belonging to the Mawas conservation area, and thus are undisturbed since the end of
the 1990s.

Tropical peat swamp forests differ significantly from tropical dryland forests (Lawson
et al. 2015). Peat lands develop usually in low drainage areas with a high water table
almost throughout the whole year resulting in a deficit of nutrients and accumulation of
organic material (Phillips 1998; Page et al. 1999; Hooijer et al. 2010; Lawson et al. 2015).
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The study area has a convex topography, which results in a dome shaped terrain typical
for many peat lands (Figure 2; Phillips 1998).

The largest peat layer is at the top of the peat dome with decreasing peat thickness
towards the edge of the dome (Sorensen 1993; Phillips 1998; Page et al. 1999). The
nutrients are elutriated from the top, and thus the nutrient level decreases from the
edges towards the top of the peat dome (Phillips 1998; Sorensen 1993; Page et al. 1999).
This nutrient distribution results in a typical species composition and forest structure.
Forests with high trees up to 35 m and high biomass are located towards the edge of
the peat dome close to the river (Figures 2 and 3). The height and biomass of the trees

Figure 1. Location of study area in Central Kalimantan, Indonesia (a), and iDEM of study area with
location of field plots, lidar transect (grey) and profile from Figures 2 and 6 (black line; b).

Figure 2. Profile of lidar as well as iDEM DSM and DTM over peat dome (from west to east) with
location of field transects.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5025



decreases towards the top of the peat dome, whereas the tree density increases (Figures
2 and 3; Sorensen 1993; Page et al. 1999). Physiognomic and structural profiles were
created from field measurements (see Section 3.3) showing the transition from tall trees
to smaller and thin trees, whereas increase in number of trees within the field transect.
Field plots (a) to (d) are heterogeneous with dominating large trees resulting in high
biomass, whereas (j) to (p) exhibit small trees with a homogeneous height (Figure 3).

Figure 3. Physiognomic – structural profiles of the 16 field plots allocated along the transect.
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3. Data description

3.1 Interferometric height models

TanDEM-X intermediate digital elevation model (iDEM) was used in this study, which was
produced and released by German Aerospace Center (DLR) in 2014. This DEM was
created by using a close formation of the TerraSAR-X and TanDEM-X X-band SAR
satellites with a wavelength of about 3.1 cm. Interferometric data of the entire land
mass was acquired several times between 2010 and 2014. The data for the creation of
the global DEM were acquired in the horizontal polarization (HH) using the bistatic
acquisition in StripMap mode (i.e. one satellite transmits the SAR signal and both receive
the signal simultaneously from different orbit positions resulting in negligible temporal
decorrelation effects) (Krieger et al. 2007).

The iDEM was created using only one baseline configuration out of several interfero-
metric acquisitions of the mission’s first year. The final product of the TanDEM-X
WorldDEMTM will be created out of multiple acquisitions and baseline configurations
in order to fulfil the specified vertical accuracy (Krieger et al. 2007; Airbus Defence and
Space 2014). Thus, the accuracy of this intermediate product (iDEM) may be lower than
the WorldDEMTM. However, it can be argued that the assessment of its potential for
aboveground biomass estimations is already useful with the iDEM. This is due to the
similar data source and processing differing only in the multiple-baseline phase unwrap-
ping, affecting mainly mountainous regions (Wessel et al. 2013). In addition, the heights
of forests found to be stable over different acquisitions suggesting that the acquisition
date and number of acquisitions plays a minor role for canopy height and biomass
estimation (Solberg, Lohne, and Karyanto 2015b, 2015c). The iDEM tile used in this study
was created with TanDEM-X acquisitions from 21 December 2010 to 15 January 2012
covering a 1° × 1° cell.

Geo-Intelligence of Airbus Defence and Space created in a semi-automated process a
DTM representing the bare earth terrain on the basis of the iDEM. This DTM was used in
this study and was provided by Geo-Intelligence of Airbus Defence and Space. First,
objects were delineated and their height estimated. Second, this estimated height was
subtracted from the respective objects. Finally, small objects were removed and the
terrain height interpolated. Both interferometric height models had a posting of about
12 m (0.4’ × 0.4’; Wessel et al. 2013; Airbus Defence and Space 2014).

3.2 Lidar height models

Full-waveform lidar data were acquired on 5 August 2007 on a sunny and cloud-free day
with a Riegl LMS-Q560 instrument (Table 1). The helicopter with the Riegl LMS-Q560
instrument had an altitude of 500 m above ground. The laser range finder system LMS-
Q560 acquired up to four returns of the signal from ground, whereas only first and last
pulse laser echoes were used. The acquisition date was in the dry season in order to
avoid inaccurate derivation of the DTM due to high water levels on the ground. The laser
beams were classified with a terrain-adaptive bare earth algorithm into ground and over
ground classes. Delaunay triangulation was utilized in order to create a triangular
irregular network (TIN). This was the basis for the extraction of square grid pixels with
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a linear interpolation for ground and over ground layers representing a terrain model
and a surface model (Boehm, Liesenberg, and Limin 2013; Liesenberg et al. 2013). The
filtering and classification of DSM and DTM were conducted in an IDL software package
used by company Milan (Boehm, Liesenberg, and Limin 2013). The final dataset had a
horizontal resolution of 1 m and a vertical resolution of 0.15 m. The lidar dataset covered
about 34 km2 of the iDEM.

3.3 Field data

Field measurements were conducted in 2013 and 2014. A transect along west-east
direction in the study area covering the whole peat dome from riverine forest to low
pole forest were used to sample field plots systematically every kilometre (Figure 1).
Hence, a large range and variability of aboveground tree biomass values within a
tropical peat swamp forest were covered despite the difficult accessibility of the area.
In total, 16 sample plots with a size of 50 m × 20 m were measured. The small size of
field plots was chosen assuming no drastic change of the forest within the length of the
plots in order to sample more field plots in this peat swamp forest. All field plots were
located with GPS with a specified accuracy of 3 m. The height and diameter of all trees
with a diameter at breast height (dbh) larger than 10 cm within a plot were measured
and tree species recorded (Table 2). About 35 species per plot in average were present.

In total, 16 field plots with tree measurements were located within iDEM and 13
within lidar coverage. The field measurements covered a range of aboveground biomass
between 250 and 450 t ha−1 (see Section 4.2 for aboveground biomass calculation). A
vertex clinometer was used for the tree height measurements. The stems of the
measured peat swamp forest trees were relatively thin (in average 14.4 cm; Table 2)
and most of them were regularly shaped. Irregular cross sections of stems were not
handled individually. Parts of the field measurements were re-measured by a second
independent team with the same instruments. This resulted in low discrepancies and
high correlation between the measurements (R2 > 0.9) suggesting reliable analysis.

Table 1. Properties of the airborne lidar system LMS-Q560 (Riegl).
Property Value

Scan angle (field of view) ±30°
Swath width About 500 m
Scan frequency 66–100 kHz
Vertical laser beam accuracy ≤0.1 m
Horizontal laser beam accuracy ≤0.5 m (for x- and y-direction)
Laser beam (mrad) 0.5 (footprint up to 30 cm)
Laser wavelength 1.5 µm (near-infrared)
Point density 1.4 points m−2

Table 2. Field measurements and according mean, minimum, and maximum of all measured trees.
Measurement Mean Minimum Maximum

Tree height (m) 15.6 5.3 37.8
Height of first green branch (m) 9.6 1.5 26.9
DBH (cm) 14.4 10 63.3
Average number of trees ha−1 1329.4 – –
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4. Methods

4.1 Verification of height models

The accuracy of the iDEM and the derived DTM was assessed by comparison with the
respective lidar DSM and DTM. For this purpose, the lidar elevation models were
aggregated and bilinear resampled to similar pixel-size as the iDEM (12 m). Different
CHMs were calculated by subtracting the lidar DTM from lidar DSM (CHMlidar), the lidar
DTM from iDEM (CHMiDEM/lidar) as well as the iDEM from iDEM DTM (CHMiDEM; Table 3;
Figure 4).

In order to evaluate the different height models quantitatively, a statistical analysis on
pixel level was carried out. The RMSE and linear error of 90% (LE90) were used. The RMSE
was calculated with the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

yi � yið Þ2
vuut and RMSE in %ð Þ ¼ RMSEð Þ

�y
� 100: (1)

The LE 90 is a commonly used criterion to evaluate a DEM in vertical dimensions
describing the vertical distance in which 90% of the control points and corresponding
model values can be found. The mean error (ME), standard error (SE), and a ratio of both
errors (k) were used to calculate the LE90:

Table 3. Overview of available canopy height models.

Canopy height model Input DSM Input DTM
Original spatial resolution

(m) Number of used field transects

CHMiDEM iDEM DSM iDEM DTM 12 16
CHMiDEM/lidar iDEM DSM lidar DTM 12 13
CHMlidar lidar DSM lidar DTM 1 13

Figure 4. Overview of simplified methodological flowchart.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5029



ME ¼ 1
N

XN
i¼1

yi � yi; (2)

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

N� 1

r XN
i¼1

yi � yið Þ2; (3)

k ¼ 1:6435� 0:999556
MEð Þ
SEð Þ

� �
þ 0:923237

MEð Þ
SEð Þ

� �
� 0:282533� MEð Þ

SEð Þ
� �

; (4)

LE90 ¼ MEð Þ þ k SEð Þð Þ; (5)

The relative volume error (VErel) was calculated in order to estimate the systematic
over – or underestimation of the model:

VErel ¼ 100�
Pn

i¼1 yi � ŷið ÞPn
i¼1 yið Þ ; (6)

Positive values indicate a systematic underestimation of the model versus the refer-
ence whereas negative values indicate a systematic overestimation of the model against
the reference. In addition, the coefficient of determination (R2) was calculated as follows:

R2 ¼ 1�
Pn

i¼1 yi � ŷið Þ2Pn
i¼1 yi � �yið Þ2 ; (7)

where yi is the actual value of i and ŷi the predicted value of i, and �y is the mean of
actual values. The accuracy of the DSM was assessed over ground cover types with and
without vegetation, where no penetration differences between lidar and SAR could be
assumed. Areas without vegetation cover were delineated where the lidar CHM was
below 2 m. In addition, the CHMiDEM as well CHMiDEM/lidar were verified against CHMlidar

in order to assess the error propagation into CHMs for biomass estimation.

4.2 Biomass estimation and verification

The aboveground tree biomass density in tonnes per hectare for each field plot was
calculated using different allometric equations based on stand tables and volume data
(Figure 4). Lawson et al. (2015) suggested that standard allometric equations have to be
tested in peat forests since they were not developed for peat forests. Nevertheless, the
choice was in favour of global or pan-tropical models (Brown and Iverson 1992; Brown
and Lugo 1992; Brown, Gillespie, and Lugo 1989; Chave et al. 2005; Hajnsek and
Hoekman 2006; Chave et al. 2014), because these are based on a large number of
destructive measurements (Brown and Iverson 1992; Brown and Lugo 1992; Brown,
Gillespie, and Lugo 1989; Chave et al. 2005; Reyes et al. 1992; Manuri et al. 2014).
Regional or local models exhibit a higher risk of biased predictions due to the small
sample size (Chave et al. 2005; Manuri et al. 2014). The aboveground tree biomass
density used as field reference for each field plot was calculated, according to following
allometric equations (Brown and Lugo 1992; Hajnsek and Hoekman 2006):
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biomass ¼ vob � wd � bef ha�1
� �

; (8)

where vob is the volume over bark, wd is volume-weighted average wood density, which
was determined as 0.57 t m−3 representing the arithmetic mean for Asian forests (Reyes
et al. 1992). The bef is the biomass expansion factor in order to include leaves, twigs, and
branches. The volume over bark was calculated as the sum of bole volume:

bolevolume ¼ b� h� s; (9)

where b means basal area, h tree height, and s shape factor of 0.7. The biomass
expansion factor for bole volume equal or larger than 190 t ha−1 was determined as
1.74. The biomass expansion factor for a bole volume (bv) below 190 t ha−1 was
calculated (Brown and Lugo 1992):

bef ¼ exp 3:213� 0:506 ln bvð Þð Þ: (10)

Mean values of the different CHMs were extracted for each field plot. Each 0.1 ha grid cell
contained about 10 pixels with a pixel spacing of 12 m for iDEMmodels. It can be assumed
that this yielded stable results due to the high accuracy in this iDEM sample (see Section 5.1).
The aboveground biomass value for each plot was correlated with the correspondingmean
value of the CHM from iDEM (CHMiDEM as well as CHMiDEM/lidar) and CHMlidar (Figure 4). A
linear model via least squares regression fitting (Seber and Lee 2003) was applied for the
different CHMs and aboveground biomass. Not all field plots were located within the lidar
dataset. Those field plots were not used for any model based on lidar DTM or DSM resulting
in a smaller number of field observation with 13 samples (Table 3).

An explicit validation data set was not available due the difficult accessibility of the
area resulting in the low number of field plots. Therefore, a k-fold cross-validation was
applied in order to estimate the goodness of the models (Breiman et al. 1984; Kohavi
1995), where k was set to 10. The 10-fold cross-validation was frequently used and
recommended for such purposes (Molinaro, Simon, and Pfeiffer 2005; Kohavi 1995;
Breiman and Spector 1992; Breiman 1996).

5. Results

5.1 Goodness of the height models

The iDEM DSM achieved an RMSE of 0.74 m and a LE90 of 0.79 m compared to lidar
measurements in areas without vegetation cover without any significant over- or under-
estimation (VErel = 0.1%, Figure 6). The main topologic features were clearly visible in
both models (Figure 5). Including areas with vegetation cover, the accuracy decreased to
an RMSE of 5.1 m and a LE90 of 7.48 m (Table 4). The observed VErel of −3% revealed a
small systematic overestimation. The investigations confirmed that the value variations
were much smaller in the iDEM DSM compared to lidar DSM (Figures 2 and 6).

The iDEM DTM represented the terrain topography in general, with overestimations
where taller trees and underestimations where smaller trees were present (Figure 2). The
iDEM DTM achieved an RMSE of 1.39 m and LE90 of 1.49 m underneath forest cover
(Figure 6). The iDEM DTM showed no systematic over- or underestimation with a relative
volume error of 0.1%.
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Figure 5. Comparison of iDEM DSM (and corresponding shaded relief; a and b) and lidar DSM (and
corresponding shaded relief, c and d).

Figure 6. Colour density representation of scatterplots from iDEM DSM (left) and iDEM DTM (right)
validation under vegetation cover (top) and without vegetation cover (bottom).
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Overall, the iDEM DSM ranged between 47 and 79 m, whereas the corresponding
DTM had a value range of 46 and 62 m. The lidar DTM suggested a similar value range of
about 47 and 65 m. This confirmed the flatness of the area. The lidar DSM resulted in a
similar minimum value of 47 m, but had a higher maximum of about 90 m.

As expected, the errors from both models propagated to the CHMiDEM. Nevertheless, the
CHM derived exclusively from iDEM achieved a moderate RMSE of 5.2 m and LE90 of 7.6 m.
The lower variations of the DSM and the overestimation of DTM at taller trees and under-
estimation at smaller trees resulted in a lower spatial variability of the forest canopy height
compared to lidar. The CHMiDEM were homogeneous over all forest areas, whereas the
CHMlidar indicated trends of lower and higher vegetation. This was clearly visible in the east
of the height profile (Figure 7(top)). In contrast, the CHMiDEM/lidar represented differences in

Table 4. Overview of results based on different canopy height models.
Canopy
height model

Accuracy of DSM
(RMSE [m])

Accuracy of DTM
(RMSE [m])

R2 for aboveground
biomass estimation

RMSE in aboveground biomass
estimation (t ha–1)

CHMiDEM 5.1 1.4 0.18 54.1 (16%)
CHMiDEM/lidar 5.1 – 0.68 24.5 (7.5%)
CHMlidar – – 0.75 21.3 (6.5%)

Figure 7. Profile of CHMlidar (black) and two different iDEM CHMs (CHMiDEM = a, CHMiDEM/lidar = b).
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vegetation height similar to CHMlidar (Figure 7(bottom)). Nevertheless, CHMiDEM/lidar

achieved similar accuracies compared to CHMiDEM with an RMSE of 5.1 m and LE90 7.5 m.
The CHM based on iDEM had a range from 0 to 25m, whereas the CHMlidar ranged between
0 and 37 m.

5.2 Biomass estimation

The CHMiDEM/lidar and field measured aboveground biomass showed a coefficient of
determination of 0.68 (Figure 8). The CHMiDEM resulted in a substantially lower R2 of 0.18.
The CHMiDEM ranged between 12 m and 14 m for the field plots, whereas the biomass
ranged between 258 and 440 t ha−1. In contrast, the CHMiDEM/lidar had a larger range of
9.9 and 14.8 m compared to the CHMiDEM, although the derived biomass range was
almost similar (258–410 t ha−1). The CHMlidar ranged between 6.3 and 12.9 m and
resulted in a R2 of 0.75 (Figure 8).

Despite the low coefficient of determination for the CHMiDEM, the 10-fold cross-
validation resulted in a moderate average RMSE of 54.1 t ha−1 representing 16.3% of
the mean biomass. The moderate RMSE could be related to the low variation of heights
within the CHMiDEM. As expected due to the substantial higher R2, the other CHMs
resulted in substantially lower average RMSEs of 24.5 t ha−1 (7.5%; CHMiDEM/lidar) and
21.3 t ha−1 (6.5%, CHMlidar), respectively (Table 4). The uniform CHMiDEM resulted in weak
biomass differences along the transect, whereas the CHMiDEM/lidar and CHMlidar biomass
estimation clearly indicated high biomass in the west close to the river and lower
biomass in the east and at the top of the peat dome (Figure 9). However, the range
of all biomass estimations was similar in forested areas with about 200 and 500 t ha−1.

6. Discussion

6.1 Height accuracy and implications for CHMs

The differences of iDEM and lidar height have multiple reasons. First, the acquisition
geometry of an InSAR and lidar system is different. The iDEM was acquired with a space
borne SAR interferometer, which acquired the data in side-looking geometry with
incidence angles of about 30–50°. This results in a lower probability to detect the ground
or smaller trees in openings of the forest canopy compared to a lidar system with scan
angles of ±30°. Second, the resolution of both systems is different. The lidar signals were

Figure 8. Regression of canopy height models versus aboveground biomass.
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classified, filtered, and sampled to a square grid pixel size of 1 m. The iDEM was derived
from TanDEM-X StripMap data with a resolution of about 3 m and was posted to 12 m
(Wessel et al. 2013). This could explain the local overestimation of iDEM compared to
lidar despite the penetration depth of X-band InSAR. Sadeghi, Leblon, and Simard (2016)
observed a similar local overestimation of SAR compared to lidar in boreal forests, which
was similarly to our study related to the resolution difference and side looking effect.
Third, short wavelength of X-band interacts mainly with constituents of the upper
canopy resulting in a low penetration depth, which is a result of height and density of
the forest (Solberg et al. 2010; Dobson et al. 1995; Treuhaft and Siqueira 2004; Askne
et al. 2013). Differences in signal sampling resolution and averaging for noise reduction
in combination with side-looking geometry and low penetration depth explain the lower
amplitude and variation of the iDEM compared to lidar.

Wallington andWoodhouse (2004) found low accuracies for DTMgenerated fromX-band
InSAR interpolation, resulting in low accuracies in the CHM (RMSE = 23.5 m). In contrast, the
iDEM DTM achieved high accuracies with and without vegetation cover. Nevertheless, the
reconstruction and quality of the terrain model largely depends on ground visibility and
complexity of the terrain. Generally, the actual terrain height values are lowest where the
highest vegetation existed, whereas highest terrain values are present where the lowest
vegetation occurred. Therefore, the DTM follows the canopy surface, thus resulting in an
almost constant CHM. The inaccuracies of iDEM DSM and iDEM DTM propagated into the
canopy height estimation. Nevertheless, the RMSE of the CHMiDEM is similar to other CHM
estimations with InSAR (Neeff et al. 2005; Balzter, Rowland, and Saich 2007; Rombach and
Moreira 2003; Hyde et al. 2006). As expected, CHM based on combination of InSAR surface
height and lidar terrain height achieved higher accuracies.

Accurate DTMs can be created out of multiple sources like lidar or long wavelength
SAR. It could be expected that the existence of DTMs will increase in the future. For
instance, the ESA’s BIOMASS mission will exploit P-band InSAR in order to create a
terrain model (ESA 2012), which could be used for canopy height estimations with high
accuracy (Hansen et al. 2015; Neeff et al. 2005). Assuming that the terrain will not
change drastically over time, TanDEM-X height models can be used with any past or

Figure 9. Comparison of aboveground biomass estimation from CHMiDEM (top), CHMiDEM/lidar (cen-
tre), and CHMlidar (bottom).
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future terrain model to create CHM representing the status from 2010 to 2014. Previous
studies showed the potential of TanDEM-X in combination with lidar in boreal and
Miombo forests (Sadeghi, Leblon, and Simard 2016; Solberg et al. 2013; Rahlf et al.
2014; Naesset et al. 2016), which was confirmed for tropical forests in this study.

6.2 Biomass estimation with CHMs

The biomass estimations resulted in relative RMSE of 16% for TanDEM-X-based CHMiDEM

compared to 6.5% for lidar-based CHMlidar and 7.5% for the combination of both sources
(CHMiDEM/lidar). Since the CHMiDEM/lidar and CHMlidar resulted in a similar RMSE, it could be
argued that the iDEM DSM is suitable to estimate aboveground biomass with high accuracy
in cases where an accurate terrain model exists. Again, any terrain model could be used in
combination with globally consistent TanDEM-X dataset to create a CHM. The iDEMDTM can
be used to produce a CHM in case of unavailability of highly accurate terrain model. This has
large impact on the accuracy of the estimation and provides only an indication of biomass.

It was previously found that lidar compared to InSAR resulted in significantly lower RMSE
in biomass estimations in boreal forests or temperate forests (Rahlf et al. 2014; Naesset et al.
2011, 2016; Hyde et al. 2006). This was not confirmed by this study in tropical forests
showing similar RMSE values for CHMiDEM/lidar and CHMlidar. The height and density of the
forest influence the resulting surface height of X-band InSAR estimate, whereas both
parameters explain the biomass variation to a large extent (Askne et al. 2013; Treuhaft
and Siqueira 2004; Solberg et al. 2010). Therefore, it could be argued that the InSAR surface
height estimation can achieve comparable accuracies to lidar. The iDEM performed similar
or better to previously investigated biomass estimations in tropical forests based on air-
borne InSAR CHMs (Neeff et al. 2005; Gama, Dos Santos, and Mura 2010; Treuhaft et al.
2009). For instance, Treuhaft et al. (2009) estimated the aboveground biomass of tropical
forests in Costa Rica resulting in an accuracy of 30%. Neeff et al. (2005) reported a cross-
validated RMSE of 46.1 t ha−1 on basis of an InSAR CHM and P-band backscatter, whereas
Gama, Dos Santos, and Mura (2010) reported an RMSE of 16 t ha−1 (20% of mean biomass).
Treuhaft et al. (2015) also demonstrated the high potential of TanDEM-X heights in combi-
nation with interferometric coherence in tropical forests, which was confirmed in our study
by using the height only. In addition, the found relationship of TanDEM-X InSAR heights in
tropical forests is usable in biomass change estimation based on X-band InSAR height
differences (Solberg et al. 2014, 2015a).

Biomass estimations in tropical peat swamp forest based on combination of field
measurements and lidar data resulted in 20–40% errors (Boehm, Liesenberg, and Limin
2013; Kronseder et al. 2012; Englhart, Jubanski, and Siegert 2013; Ballhorn, Jubanski, and
Siegert 2011). SAR data was also frequently used to estimate biomass of tropical peat
swamp forests (Englhart, Keuck, and Siegert 2011; Morel et al. 2011; Schlund et al. 2015).
SAR backscatter based methods suffer mostly from saturation effects, whereas saturation
at 88 t ha−1 for L-band and 80 t ha−1 for X-band were suggested (Morel et al. 2011;
Englhart, Keuck, and Siegert 2011). The biomass of the investigated area is exceeding
this saturation limit for majority of the forest area. Exploiting the phase of the SAR signal
using the coherence increased the saturation level and accuracy (Schlund et al. 2015).
The measurement of the canopy height for estimating biomass could overcome the
current saturation limitations for short wavelength SAR systems.
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6.3 Up-scaling of biomass from field measurements

Only a few field measurements are necessary to transform lidar metrics to biomass
(Asner et al. 2009). A prerequisite of this assumption is the distribution of the field
measurements over the entire range of biomass. The field measurements were
sampled systematically on a transect over the peat dome. Therefore, it could be
assumed that the whole range of biomass was covered with 250–450 t ha−1 despite
the difficult terrain accessibility. Nevertheless, more ground reference could poten-
tially improve the estimation of biomass and its uncertainty analysis using an explicit
validation data set. In general, studies in tropical peat swamp forests need more field
measured data to increase confidentiality. However, as explained before this is hardly
achievable due to their remoteness and frequently high water tables (Lawson et al.
2015; Phillips 1998).

Additional errors may result from different acquisition dates of field measurements
and remote sensing data (i.e. the lidar dataset 2007 vs 2014). However, the study area is
part of a conservation area where the forests are relatively undisturbed since the
abandonment of the MRP in 1999 (Aldhous 2004). Moreover, investigations showed
that the biomass increases only marginally in undisturbed peat swamp forests of Central
Kalimantan as well as in the study area (Boehm et al. 2012; Boehm, Liesenberg, and
Limin 2013; Englhart, Jubanski, and Siegert 2013; Sweda et al. 2012). Therefore, it can be
concluded that inconsistencies between the different acquisition dates are minimal and
may not affect the results substantially.

GPS localization is also an error source to be considered. However, assuming no
drastic change of the forest structure within the field plots and sampling the biomass
to 0.1 ha or coarser minimizes the error of GPS localization inaccuracies. Another
source of error to be considered is the transformation of field measurements to
biomass with allometric equations. Lawson et al. (2015) suggested pan-tropical
equations could not be suitable to apply on tropical peat land. This requires con-
firmation, but it could be argued that the advantage of using a local model with low
number of samples will not compensate the potential bias compared to pan-tropical
equations with large number of samples (Chave et al. 2005; Manuri et al. 2014;
Lawson et al. 2015). Therefore, several pan-tropical allometric equations were tested
in order to select the most appropriate for biomass estimation in the peat swamp
forest investigated. The choice was guided by the goal to attain similar values as
other studies conducted in peat swamp forests. In addition, statistical values of the
field measurements were compared to other studies in order to achieve comparable
results. The statistical distributions of dbh and tree height measured in peat swamp
forests were similar to other studies (Page et al. 1999; Nishimua et al. 2007; Boehm,
Liesenberg, and Limin 2013).

The field measurements resulted in an average biomass of 330 t ha−1, whereas the
range was 250–450 t ha−1. The derived biomass is in the order of other studies in peat
swamp forests of southeast Asia (Table 5). Therefore, it can be concluded that the
biomass values used in this study are representative and can be used for the purpose
of this study. The differences in those estimates could of course be related to the
different geographical locations and the associated conditions as well as different
allometric equations used for biomass calculation.
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7. Conclusions

Although based on iDEM precursor data, the results of this study demonstrate that the
final TanDEM-X elevation model WorldDEMTM has high potential in combination with
high accurate terrain information for estimation of CHMs and aboveground biomass of
tropical forests. The found relationship can be also utilized in biomass change estima-
tions based on canopy height comparison. The WorldDEMTM will be globally consistent
available resulting in potential cost-efficient and consistent surface estimations usable
for canopy height estimation with any terrain information.

The iDEM (especially in combination with an accurate DTM) resulted in a CHM, showing
high correlation with biomass (R2 = 0.68). However, an accurate DTM is not always available.
The iDEM or WorldDEMTM can be used for reconstructing a terrain model, achieving a high
accuracy in relatively flat terrain without vegetation cover. The combination of iDEM DSM
and iDEM DTM resulted in a reliable estimation of a CHM, with an RMSE of 5 m compared to
lidar reference. However, the terrain model was not able to represent the terrain under-
neath vegetation cover. This resulted in a uniform CHM yielding poor correlation (R2 = 0.18)
and moderate cross-validated RMSE for aboveground biomass estimation of 54 t ha−1

(16%). Nevertheless, it could be argued that this solution can be used where no other
biomass information is available resulting in a coarse indication of biomass.
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Table 5. Comparison of aboveground biomass values from different studies in southeast Asia.
Aboveground
biomass (t ha–1) Area Source

0–370 Sebangau National Park
(Central Kalimantan)

Boehm, Liesenberg, and Limin (2013); Englhart, Keuck, and
Siegert (2011); Kronseder et al. (2012)

228 Sebangau National Park
(Central Kalimantan)

Kronseder et al. (2012)

248–311 Sebangau National Park
(Central Kalimantan)

Waldes and Page (2002)

264–397 Southeast Asia Verwer and van der Meer (2010)
287–491 Thailand Kaneko (1992)
359.6 ± 76.4 Java, Borneo and Peninsular

Malaysia
Koh et al. (2011); Koh et al. (2012); Murdiyarso, Hergoualc’h, and

Verchot (2010)
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